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Electrostatic potential above a unifomly charged conducting plane deformed to include
a hemispherical cup
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The electrostatic potential is calculated above a uniformly charged conducting plane that has been deformed
to include a hemispherical cup centered at the origin. The charge density on the surface is obtained.
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A standard problem in electrostatics is as follows: “An expected, the results differ qualitatively from the dome prob-
infinite conducting sheet in they plane carries a uniform lem. The charge density et a, =/2 becomes infinite, but
charge densityr,. The sheet is isolated and a hemisphericalthe change in the integrated charge density remains equal to
conducting dome having radius is placed on the sheet, zero. The purpose of this Brief Report is to present a formal
centered at the origin. What is the potential in the space solution to this problem. This problem is not only of aca-
>a, 6</2 and what is the charge density on the sheet?’tdemic interest. Imperfections in electrodes can be modeled
Using the general solution of Laplace’s equation with bound-as cups in certain cases. In such situations, the solution pre-
ary conditions sented below can be used to find the modifications in the
potential produced by these imperfections. This may be es-

E~oiez 2~ pecially important in problems involving ion traps used in

laser cooling.
V=0, r=a <2, andf=ml2,1>a, Dimensionless units are introduced wheres measured
one shows easily that the potential is given by in units ofa, V in units of (oea/ &), o in units of o, charge
5 in units of oy@%, and the dipole moment in units ofmér,a’.
a ; i — .
V= (00/60){_ r+ _2} cos0 Incorporating the boundary CO.ndI.'[I(.)IﬁV(I’,ﬂT/Z)—O, r'>1,
V(1,0)=0, w/2< 0<;, V(r=0) is finite], one can write the

and the charge density by general solution as

3ogc0s0, r=a, 6<m/2
o= al
O'O(l —F), 0=ml2, r > a.
Note that the charge density vanishes where the dome meets

the plane at=a, 6=m/2. It is easy to verify that the change X
in charge per unit azimuthal angle vanishes, that is, (@

. * a z 4
cos# sin 6d6 + oy 1—5 rdr

a
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The potential is that of a uniformly charged sheet plus a
dipole having dipole momerg=4woyaz located at the ori-
gin.

Suppose, however, that instead of adding a dome above
the sheet, one adds a hemispherical conducting bleddw
the sheet and then cuts out a circle having radii®m the ®)
sheet to arrive at the surface indicated schematically in Fig.
1. Now the problem is one involving a spherical “cup” rather  FIG. 1. Bounding surface for the spherical cup problga):
than a bump. As is seen below, the solution of the potentiathree dimensional view(b) a cut in thex-z plane, showing the
problem for the cup is no longer trivial and, as might berelevant coordinates.
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[

Vin= 2 ASPL(x), <1, (1a)
n=0
- Bania
VOIJt_ - rPl(X) + E r2n+2 P2n+1(X)a r> 11 X> 01 (1b)

n=0

where P,(x) is a Legendre polynomial ang=cos6d. The
boundary conditions at=1 require that

©

i AP, (X) = =P1(X) + > Bone1Ponea(x), 0=x<1
nt AT n=0
n=0 0, . O |
(2
> NAPAX) == Py(X) = 2, (2N + 2)Bos1Pons1(X),
n=0 =0
O=x=1. 3

Owing to Dirichlet boundary conditions, one need not

specify a boundary condition on the derivatives forl,
-1=x=<0.
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FIG. 2. Equipotential contour plots for the potential above the
spherical cup. The equipotentials shown &we-0.001, —0.005,
-0.1, -0.2, -0.4, -0.6, -0.8, -1.0.

o]

(6N +5)Agpe1 == 36,0~ 2 2MAyFones am-

m=1

This equation can be rewritten as

e

Using the orthogonality of the Legendre polynomials toith

solve Eq.(2) for A,, one finds

©

1
An= anrl f [— P1(X) + 2 Bome1Pomea(X) | Pr(dX.

2

0 m=0
4)
For n odd, this equation yields
B,=2A;+1,
Bon+1=2A2041, N# 0. (5

When Eg.(5) is substituted into Eq(4), one finds, forn
even,

o

A2n = E I:2n,2m+1A2m+1a (6)
m=0
where
1
F(g’(r = (2 { + 1)J P((X)P(!(X)dx
0
(- ) D220 + 1)(0- DN (LN

)

for € # €'. It follows from Eqgs.(1), (5), and(6) that, once the
odd A,s are determined, the problem is solved.

To find the A,s for oddn we use the condition on the

derivatives. Multiplying Eq(3) by P,,.1(x), integrating over
x from 0 to 1, and using Eq$5)—(7), one obtains

Aopiy = — §5 - ;2 G A (8)
2n+1 — 5 n,0 (6n+ 5) = 2n+1,20+172p+1
Gone1,2p+1= E 2mMFn11 omFom, 2p+1- 9
m=1

Formally one can write

Aoga=— (3/5)(1 +G)'S, (10)

whereSis a column matrix haviga 1 as itdirst element and

the rest zeroes, Whil&;n.1 211=Gone1,2p+1/ (6N+5). Equa-
tion (10), together with Eqs(5) and(6), completely specifies
the potential.

We evaluatedG as a 15X 151 matrix, summing 4000
terms in Eq.(9). The potential was then obtained as a series
out tor3 for V;, andr3%2for V,,. The explicit expression
for A,qq is given in the Appendix. An equipotential plot is
shown in Fig. 2. As can be seen, the solution does an excel-
lent job of representing the equipotentials in the region near
the “edge.” The solutions fo¥,, and V,,; at r=1 agree to
within 0.05% for 6<7/2-0.2 and to within 1.0% ford
</2-0.02, indicating that convergence of the series solu-
tion becomes problematic only as one approaches the edge.
The charge density on the cumi(6)= dV(r,0)/dr|
(m/2< 6=<m), is plotted in Fig. 8a) and the charge density
on the planeopand)=r1aV(r,6)/ 36| p=rp (r=1) in Fig.
3(b). The integrated charge density per unit azimuthal angle
on the cup is equal to 0.31195, while the change in the inte-
grated charge density per unit azimuthal angle on the plane,
Jilopiandr) —1]rdr, is equal to 0.17942. As a check of the
numerical accuracy one finds that tohangein the inte-
grated charge per unit azimuthal angle, which should vanish
identically, is equal to
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FIG. 3. Charge densit§in dimensionless unijgor the spherical
cup. (@ ogyd6) on the spherical cupr=1,7/2<6<m), (b)
opiandl) along the planéd=m/2,r=1).

d(&q)/qu:f: sin 9Ucup(0)d0+fmropme(r)dr—fw rdr
72 1

0
= - 0.00863, (11)

for our numerical series solution. At largethe potential is
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that of a uniformly charged sheet and a dipole having dipole
momentp=-0.087& centered at the origin.

By comparing our solutions taking different numbers of
terms forA,q4 We can estimate that the solution ®j,,dr)
represents an accurate solution for1.012. In the range
1.012<r=<1.015, one finds thatrpaadr) ~ (r—1)%4 The
convergence of the series solution is slow near the edge and
it would require thousands of terms to get the correct
asymptotic behavior of the charge densityrasl. Since the
angle between the cup and planeni$2, one might expect
the charge density to vary &s-1)"3asr ~ 1 [1]. In fact, if
one fits the charge density asryadr)=a(r-1)3
+b(r-1)* using values ofo,dr) in the range 1.01&r
=<1.03, one obtains a best fit foa=0.753, b=0.430,
and the resulting expressiong,dr)=0.753r-1)"%3
+0.430r -1)*3, differs fromorandr) by no more than 4% in
the extended range 1.08& <1.2, lending some support to
this asymptotic form for the charge density. This form of the
charge density also gives some indication of the rate of con-
vergence of the series solution for the potential in the vicinity
of the edge. One would expect that, near the edge, the series
would converge in a manner similar to the series expansion
of (1-r)?® asr~1 [1]. Forr=1-€ with e<1, this series
converges very slowly and requires approximately le74/
terms to achieve an accuracy of 1%4.
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APPENDIX

The numerically obtained value f@éY,qq is

Aogq={-0.5438,0.02532,- 0.01758,0.01336,- 0.01071,0.008911,- 0.007604,0.006617,- 0.005845,0.005227,

- 0.004721,0.004299,- 0.003943,0.003638,- 0.003374,0.003144,- 0.002942,0.002762,- 0.002602,0.002458,
—-0.002329,0.002211,- 0.002104,0.002007,—- 0.001917,0.001835,- 0.001758,0.001688,- 0.001623,0.001562,
- 0.001505,0.001452,-0.001402,0.001355,- 0.001311,0.001270,- 0.001231,0.001194,- 0.001159,0.001126,
—-0.001095,0.001065,- 0.001037,0.001010,- 0.0009843,0.0009598,- 0.0009363,0.0009139, - 0.0008925,0.0008720,
- 0.0008523,0.0008334,- 0.0008153,0.0007979,- 0.0007811,0.0007650,- 0.0007495,0.0007345,
—-0.0007201,0.0007062,—- 0.0006928,0.0006798,- 0.0006673,0.0006552, — 0.0006435,0.0006322,

- 0.0006212,0.0006105,- 0.0006002,0.0005902, - 0.0005805,0.0005711,- 0.0005620,0.0005531,
—0.0005445,0.0005361,- 0.0005280,0.0005201,- 0.0005123,0.0005048, - 0.0004975,0.0004904,

- 0.0004835,0.0004767,- 0.0004701,0.0004637,- 0.0004575,0.0004513, - 0.0004454,0.0004395,
—0.0004339,0.0004283,—-0.0004229,0.0004176,- 0.0004124,0.0004073,—- 0.0004024,0.0003975,
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- 0.0003928,0.0003881,- 0.0003836,0.0003791,- 0.0003748,0.0003705,- 0.0003663,0.0003622,
—-0.0003582,0.0003543,—- 0.0003504,0.0003466,- 0.0003429,0.0003393, - 0.0003357,0.0003322,
- 0.0003288,0.0003254,- 0.0003221,0.0003189, - 0.0003157,0.0003126,- 0.0003095, 0.0003065,
—0.0003035,0.0003006, - 0.0002977,0.0002949, - 0.0002921,0.0002894, - 0.0002867,0.0002841,
- 0.0002815,0.0002789,- 0.0002764,0.0002740,- 0.0002715,0.0002691, - 0.0002668,0.0002645,
—-0.0002622,0.0002600, - 0.0002577,0.0002556,- 0.0002534,0.0002513, - 0.0002492,0.0002472,
-0.0002452,0.0002432,- 0.0002412,0.0002393,- 0.0002374

[1] J. D. JacksonClassical Electrodynamic8rd Ed.(Wiley, New ~(r-1)70336 while at r=1.0001, opandtrough
York, 1999, Sec. 2.11 In the related problem of a cylindrical ~(r—1)793339, The potential along the line from the origin to
trough, an analytic solution can be obtained by conformal the edge (r,¢=m/2) varies as Viy(r=1-¢,¢p=7/2)~
mapping. In that case the asymptotic form of the charge —(4/27) VB[ 213 A13/2213],
density on the plane can be shown to vary &9)
X[2Y3(r = 1)=13+2213(r = 1)13+ O((r - 1)%3)] asr ~ 1 (wherer
is now the radial distance in dimensionless units of the cylin-
drical shell radius however, one must get very closerte 1
for the (r-1)"® dependence to be seefat r=1.01,
Opandtrough ~ (r=1)793099 at  r=1.001, opandtrough 0.01<x<2.5.

[2] If s=(1-r)%3 andsp:Eﬁ:O( 2,’13)r" is the series approximation to
s, one can show that the relative eryor(s—s;)/sis a function
of x=(1-r)p only, and is given byy=b(x)/(x®+x), where
b(x) is a slowly varying function ok of order 0.1 in the range
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