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The electrostatic potential is calculated above a uniformly charged conducting plane that has been deformed
to include a hemispherical cup centered at the origin. The charge density on the surface is obtained.
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A standard problem in electrostatics is as follows: “An
infinite conducting sheet in thexy plane carries a uniform
charge densitys0. The sheet is isolated and a hemispherical
conducting dome having radiusa is placed on the sheet,
centered at the origin. What is the potential in the spacer
.a, u,p /2 and what is the charge density on the sheet?”
Using the general solution of Laplace’s equation with bound-
ary conditions

E , s0/e0ẑ z, `;

V = 0, r = a, u ø p/2, andu = p/2, r . a,

one shows easily that the potential is given by

V = ss0/e0dF− r +
a3

r2G cosu

and the charge density by

s = 53s0 cosu, r = a, u ø p/2

s0S1 −
a3

r3D , u = p/2, r . a.

Note that the charge density vanishes where the dome meets
the plane atr =a, u=p /2. It is easy to verify that the change
in charge per unit azimuthal angle vanishes, that is,

dsdqd/df = 3s0a
2E

0

p/2

cosu sinudu + s0E
a

` S1 −
a3

r3Drdr

− s0E
0

`

rdr = 0.

The potential is that of a uniformly charged sheet plus a
dipole having dipole momentp=4ps0a

3ẑ located at the ori-
gin.

Suppose, however, that instead of adding a dome above
the sheet, one adds a hemispherical conducting shellbelow
the sheet and then cuts out a circle having radiusa from the
sheet to arrive at the surface indicated schematically in Fig.
1. Now the problem is one involving a spherical “cup” rather
than a bump. As is seen below, the solution of the potential
problem for the cup is no longer trivial and, as might be

expected, the results differ qualitatively from the dome prob-
lem. The charge density atr =a, u=p /2 becomes infinite, but
the change in the integrated charge density remains equal to
zero. The purpose of this Brief Report is to present a formal
solution to this problem. This problem is not only of aca-
demic interest. Imperfections in electrodes can be modeled
as cups in certain cases. In such situations, the solution pre-
sented below can be used to find the modifications in the
potential produced by these imperfections. This may be es-
pecially important in problems involving ion traps used in
laser cooling.

Dimensionless units are introduced wherer is measured
in units ofa, V in units of ss0a/e0d, s in units of s0, charge
in units of s0a

2, and the dipole moment in units of 4ps0a
3.

Incorporating the boundary conditionsfVsr ,p /2d=0, r .1;
Vs1,ud=0, p /2øuøp; Vsr =0d is finiteg, one can write the
general solution as

FIG. 1. Bounding surface for the spherical cup problem:sad
three dimensional view,sbd a cut in thex-z plane, showing the
relevant coordinates.
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Vin = o
n=0

`

Anr
nPnsxd, r , 1, s1ad

Vout = − rP1sxd + o
n=0

`
B2n+1

r2n+2 P2n+1sxd, r . 1, x . 0, s1bd

where Pnsxd is a Legendre polynomial andx=cosu. The
boundary conditions atr =1 require that

o
n=0

`

AnPnsxd = 5− P1sxd + o
n=0

`

B2n+1P2n+1sxd, 0 ø x ø 1

0, − 1 ø x ø 0.

s2d

o
n=0

`

nAnPnsxd = − P1sxd − o
n=0

`

s2n + 2dB2n+1P2n+1sxd,

0 ø x ø 1. s3d

Owing to Dirichlet boundary conditions, one need not
specify a boundary condition on the derivatives forr =1,
−1øxø0.

Using the orthogonality of the Legendre polynomials to
solve Eq.s2d for An, one finds

An =
2n + 1

2
E

0

1F− P1sxd + o
m=0

`

B2m+1P2m+1sxdGPnsxddx.

s4d

For n odd, this equation yields

B1 = 2A1 + 1,

B2n+1 = 2A2n+1, n Þ 0. s5d

When Eq.s5d is substituted into Eq.s4d, one finds, forn
even,

A2n = o
m=0

`

F2n,2m+1A2m+1, s6d

where

F,,,8 = s2 , + 1dE
0

1

P,sxdP,8sxddx

=
s− 1ds,+,8−1d/2s2 , + 1ds,− 1d!! s,8d!!

S,

2
D!S,8 − 1

2
D!s,8 − , ds, + ,8 + 1d2s,+,8+1d/2

s7d

for ,Þ,8. It follows from Eqs.s1d, s5d, ands6d that, once the
odd Ans are determined, the problem is solved.

To find the Ans for odd n we use the condition on the
derivatives. Multiplying Eq.s3d by P2n+1sxd, integrating over
x from 0 to 1, and using Eqs.s5d–s7d, one obtains

s6n + 5dA2n+1 = − 3dn,0 − o
m=1

`

2mA2mF2n+1,2m.

This equation can be rewritten as

A2n+1 = −
3

5
dn,0 −

1

s6n + 5d op=0

`

G2n+1,2p+1A2p+1 s8d

with

G2n+1,2p+1 = o
m=1

`

2mF2n+1,2mF2m,2p+1. s9d

Formally one can write

Aodd= − s3/5ds1 + G̃d−1S, s10d

whereS is a column matrix having a 1 as itsfirst element and

the rest zeroes, whileG̃2n+1,2p+1=G2n+1,2p+1/ s6n+5d. Equa-
tion s10d, together with Eqs.s5d ands6d, completely specifies
the potential.

We evaluatedG as a 1513151 matrix, summing 4000
terms in Eq.s9d. The potential was then obtained as a series
out to r301 for Vin and r−302 for Vout. The explicit expression
for Aodd is given in the Appendix. An equipotential plot is
shown in Fig. 2. As can be seen, the solution does an excel-
lent job of representing the equipotentials in the region near
the “edge.” The solutions forVin and Vout at r =1 agree to
within 0.05% for u,p /2−0.2 and to within 1.0% foru
,p /2−0.02, indicating that convergence of the series solu-
tion becomes problematic only as one approaches the edge.
The charge density on the cup,scupsud= u]Vsr ,ud /]r ur=1

sp /2øuøpd, is plotted in Fig. 3sad and the charge density
on the planesplanesrd= ur−1]Vsr ,ud /]uuu=p/2 sr ù1d in Fig.
3sbd. The integrated charge density per unit azimuthal angle
on the cup is equal to 0.31195, while the change in the inte-
grated charge density per unit azimuthal angle on the plane,
e1

`fsplanesrd−1grdr, is equal to 0.17942. As a check of the
numerical accuracy one finds that thechange in the inte-
grated charge per unit azimuthal angle, which should vanish
identically, is equal to

FIG. 2. Equipotential contour plots for the potential above the
spherical cup. The equipotentials shown areV=−0.001, −0.005,
−0.1, −0.2, −0.4, −0.6, −0.8, −1.0.
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dsdqd/df =E
p/2

p

sinuscupsuddu +E
1

`

rsplanesrddr −E
0

`

rdr

= − 0.00863, s11d

for our numerical series solution. At larger the potential is

that of a uniformly charged sheet and a dipole having dipole
momentp=−0.0876ẑ centered at the origin.

By comparing our solutions taking different numbers of
terms forAodd, we can estimate that the solution forsplanesrd
represents an accurate solution forr *1.012. In the range
1.012ø r ø1.015, one finds thatsplanesrd,sr −1d−0.264. The
convergence of the series solution is slow near the edge and
it would require thousands of terms to get the correct
asymptotic behavior of the charge density asr ,1. Since the
angle between the cup and plane isp /2, one might expect
the charge density to vary assr −1d−1/3 asr ,1 f1g. In fact, if
one fits the charge density assplanesrd=asr −1d−1/3

+bsr −1d1/3 using values ofsplanesrd in the range 1.012ø r
ø1.03, one obtains a best fit fora=0.753, b=0.430,
and the resulting expression,splanesrd=0.753sr −1d−1/3

+0.430sr −1d1/3, differs fromsplanesrd by no more than 4% in
the extended range 1.006ø r ø1.2, lending some support to
this asymptotic form for the charge density. This form of the
charge density also gives some indication of the rate of con-
vergence of the series solution for the potential in the vicinity
of the edge. One would expect that, near the edge, the series
would converge in a manner similar to the series expansion
of s1−rd2/3 as r ,1 f1g. For r =1−e with e!1, this series
converges very slowly and requires approximately 1.74/e
terms to achieve an accuracy of 1%f2g.
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fice under Grant No. DAAD19-00-1-0412. P.R.B. acknowl-
edges helpful discussions with A. Rojo of Oakland Univer-
sity and G. W. Ford of the University of Michigan.

APPENDIX

The numerically obtained value forAodd is

Aodd= h− 0.5438,0.02532,− 0.01758,0.01336,− 0.01071,0.008911,− 0.007604,0.006617,− 0.005845,0.005227,

− 0.004721,0.004299,− 0.003943,0.003638,− 0.003374,0.003144,− 0.002942,0.002762,− 0.002602,0.002458,

− 0.002329,0.002211,− 0.002104,0.002007,− 0.001917,0.001835,− 0.001758,0.001688,− 0.001623,0.001562,

− 0.001505,0.001452,− 0.001402,0.001355,− 0.001311,0.001270,− 0.001231,0.001194,− 0.001159,0.001126,

− 0.001095,0.001065,− 0.001037,0.001010,− 0.0009843,0.0009598,− 0.0009363,0.0009139,− 0.0008925,0.0008720,

− 0.0008523,0.0008334,− 0.0008153,0.0007979,− 0.0007811,0.0007650,− 0.0007495,0.0007345,

− 0.0007201,0.0007062,− 0.0006928,0.0006798,− 0.0006673,0.0006552,− 0.0006435,0.0006322,

− 0.0006212,0.0006105,− 0.0006002,0.0005902,− 0.0005805,0.0005711,− 0.0005620,0.0005531,

− 0.0005445,0.0005361,− 0.0005280,0.0005201,− 0.0005123,0.0005048,− 0.0004975,0.0004904,

− 0.0004835,0.0004767,− 0.0004701,0.0004637,− 0.0004575,0.0004513,− 0.0004454,0.0004395,

− 0.0004339,0.0004283,− 0.0004229,0.0004176,− 0.0004124,0.0004073,− 0.0004024,0.0003975,

FIG. 3. Charge densitysin dimensionless unitsd for the spherical
cup. sad scupsud on the spherical cupsr =1,p /2øuøpd, sbd
splanesrd along the planesu=p /2 ,r ù1d.
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− 0.0003928,0.0003881,− 0.0003836,0.0003791,− 0.0003748,0.0003705,− 0.0003663,0.0003622,

− 0.0003582,0.0003543,− 0.0003504,0.0003466,− 0.0003429,0.0003393,− 0.0003357,0.0003322,

− 0.0003288,0.0003254,− 0.0003221,0.0003189,− 0.0003157,0.0003126,− 0.0003095,0.0003065,

− 0.0003035,0.0003006,− 0.0002977,0.0002949,− 0.0002921,0.0002894,− 0.0002867,0.0002841,

− 0.0002815,0.0002789,− 0.0002764,0.0002740,− 0.0002715,0.0002691,− 0.0002668,0.0002645,

− 0.0002622,0.0002600,− 0.0002577,0.0002556,− 0.0002534,0.0002513,− 0.0002492,0.0002472,

− 0.0002452,0.0002432,− 0.0002412,0.0002393,− 0.0002374j.

f1g J. D. Jackson,Classical Electrodynamics, 3rd Ed.sWiley, New
York, 1999d, Sec. 2.11 In the related problem of a cylindrical
trough, an analytic solution can be obtained by conformal
mapping. In that case the asymptotic form of the charge
density on the plane can be shown to vary ass4/9d
3f21/3sr −1d−1/3+22/3sr −1d1/3+O(sr −1d2/3)g as r ,1 swherer
is now the radial distance in dimensionless units of the cylin-
drical shell radiusd; however, one must get very close tor =1
for the sr −1d−1/3 dependence to be seenfat r =1.01,
splanestroughd,sr −1d−0.3009, at r =1.001, splanestroughd

,sr −1d−0.3316 while at r =1.0001, splanestroughd
,sr −1d−0.3330g. The potential along the line from the origin to
the edge sr ,f=p /2d varies as Vinsr =1−e ,f=p /2d,
−s4/27ds1/6dfe2/3−e4/3/22/3g.

f2g If s=s1−rd2/3 andsp=on=0
p s 2/3

n
drn is the series approximation to

s, one can show that the relative errory=ss−spd /s is a function
of x=s1−rdp only, and is given byy<bsxd / sx3+xd, where
bsxd is a slowly varying function ofx of order 0.1 in the range
0.01,x,2.5.
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